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Abstract

André, Rafael de Pinho; Raposo, Alberto (Advisor). Using Body
Sensor Networks and Human Activity Recognition Clas-
sifiers to Enhance the Assessment of Form and Execution
Quality in Functional Training. Rio de Janeiro, 2020. 70p. Tese
de doutorado — Departamento de Informéatica, Pontificia Universi-
dade Catolica do Rio de Janeiro.

Foot and knee pain have been associated with numerous orthopedic patho-
logies and injuries of the lower limbs. From street running to CrossFit™
functional training, these common pains and injuries correlate highly with
unevenly distributed plantar pressure and knee positioning during long-term
physical practice and can lead to severe orthopedic injuries if the movement
pattern is not amended. Therefore, the monitoring of foot plantar pres-
sure distribution and the spatial and temporal characteristics of foot and
knee positioning abnormalities is of utmost importance for injury preven-
tion. This work proposes a platform, composed of an IoT wearable body
sensor network and a Human Activity Recognition (HAR), to provide real-
time feedback of functional exercises, aiming to enhance physical educators
capability to mitigate the probability of injuries during training. We con-
ducted an experiment with 12 diverse volunteers to build a HAR classifier
that achieved about 87% overall classification accuracy, and a second ex-
periment to validate our physical evaluation model. Finally, we performed
a semi-structured interview to evaluate usability and user experience issues
regarding the proposed platform.

Aiming at a replicable research, we provide full hardware information,

system source code and a public domain dataset.

Keywords
Human Activity Recognition; Health and Ergonomics; Physical edu-
cation; ToT devices; Wearable Computing and Sensing; Mobile sensing

applications.
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Resumo

André, Rafael de Pinho; Raposo, Alberto. Utilizando Redes de
Sensores Corporais e Classificadores de Reconhecimento
de Atividade Humana para Aprimorar a Avaliacao de Qua-
lidade de Forma e Execucao em Treinamentos Funcionais.
Rio de Janeiro, 2020. 70p. Tese de Doutorado — Departamento de
Informética, Pontificia Universidade Catdélica do Rio de Janeiro.

Dores no pé e joelho estdao relacionadas com patologias ortopédicas
e lesdes nos membros inferiores. Desde a corrida de rua até o treinamento
funcional CrossFit™, estas dores e lesoes estao correlacionadas com a distri-
buigao iregular da pressdo plantar e o posicionamento inadequado do joelho
durante a pratica fisica de longo prazo, e podem levar a lesdes ortopédicas
graves se o padrao de movimento nao for corrigido. Portanto, o monitora-
mento da distribuicao da pressao plantar do pé e das caracteristicas espaciais
e temporais das irregularidades no posicionamento dos pés e joelhos sdo de
extrema importancia para a prevengao de lesdes. Este trabalho propoe uma
plataforma, composta de uma rede de sensores vestiveis e um classificador
de Reconhecimento de Atividade Humana (HAR), para fornecer feedback
em tempo real de exercicios funcionais, visando auxiliar educadores fisicos
a reduzir a probabilidade de lesoes durante o treinamento. Realizamos um
experimento com 12 voluntarios diversos para construir um classificador
HAR com aproximadamente de 87 % de precisido geral na classificacdo, e
um segundo experimento para validar nosso modelo de avaliagao fisica. Por
fim, realizamos uma entrevista semiestruturada para avaliar questoes de
usabilidade e experiéncia do usuario da plataforma proposta.
Visando uma pesquisa replicavel, fornecemos informagoes completas sobre
o hardware e o codigo fonte do sistema, e disponibilizamos o conjunto de

dados do experimento.

Palavras-chave
Reconhecimento de Atividade Humana;  Saude e Ergonomia;  Edu-
cagdo Fisica;  Dispostivos IoT; Computacao Vestivel e Sensoriamento;

Aplicagoes de Sensores Moveis
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And you, my father, there on the sad height,
Curse, bless, me now with your tears, I pray.
Do not go gentle into that good night.

Rage, rage against the dying of the light.

Dylan Thomas, In Country Sleep And Other Poems.
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1
Introduction

Physical education and school sport (PESS) aims at (i) developing cog-
nitive capacity and motor skills, (ii) teaching about health and the benefits of
physical activity and (iii) fostering emotional intelligence [48]. Recent research
on successful PESS programs shows a strong correlation between physical ac-
tivity, learning performance and academic success [77]. Many studies, such as
[11] and [12], identify that an adequate exposure to PESS increases energy
expenditure, allowing for the maintenance of a healthy weight and reducing
chances of experiencing chronic disease factors and becoming obese. However,
although adequate exposure to PESS is considered to be between 30 and 60
minutes per day [86], studies such as [93] and [65] point out that the aver-
age physical activity level of children and young adults worldwide is low and
decreasing, and there is a correlated increase in obesity and chronic disease
factors.

Obesity is a largely preventable chronic disorder, with genetic, behav-
ioral, socioeconomic and environmental origins, classified officially as a disease
(ICD-10 E66.0) [43]. It is defined as an abnormal accumulation of body fat that
has an adverse effect on health, leading to significant long-term health conse-
quences, such as the development of musculoskeletal disabilities, debilitating
morbidity, depression, type 2 diabetes, coronary heart disease, osteoarthritis
and the increase of the risk of developing certain cancers and influencing their
outcomes [1]. The current most widely used criteria for classifying obesity is
the body mass index (BMI). Obesity has become a rapidly growing public
health problem, predominantly by cause of (i) transition to processed foods
and high calorie diets, (ii) increasingly sedentary lifestyle with reduced levels
of exercise, (iii) falling number of hours slept, and (iv) changes in the built en-
vironment, such as urbanization, industrialization, and mechanized transport.
As discussed in [43], many countries have witnessed the prevalence of obesity in
its citizens double, and even quadruple, in recent years. Now, the growth trends
in overall obesity in most developed countries leveled off, although morbid obe-
sity continues to climb, including among children - which suggests a burden
to healthcare systems in the next decades. In addition, obesity prevalence in

most developing countries continues to trend upwards toward US levels - the
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country with higher obesity rate [69]. The recent increase in the prevalence of

obesity in Brazil is shown in Figure 1.1.

Obesidade cresce mais entre adultos de 25 a 34 anos
e @ mais prevalente na populacao de baixa
escolaridade (periodo 2006-2018)
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Figure 1.1: Obesity prevalence in Brazil. Ministério da Satude.

The epidemic of overweight and obesity, along with the worldwide
decrease of physical activity levels and the prevalence of musculoskeletal pain,
presents, then, a major challenge to physical educators around the world.
Therefore, the assembling of physical education programs that are compelling
and safe to individuals in diverse groups has seen an intense increase in
research and investigation. Over the last 10 years, functional training exercises
became a popular method to improve muscular and cardiovascular fitness, and
many studies, such as [10] and [32], point out the benefits of this type of
training regimen - while also suggesting that functional training practitioners
have increased risk of foot, knee and lower back pain and related injuries.
Nevertheless, works such as [96] and [66] point out a twofold increase of the
prevalence of knee pain injuries, whereas works such as [25] show a threefold
increase of the prevalence of lower back pain and injuries. The prevalence of
lower back pain in Brazil is 13.5% [44], whilst the prevalence of knee pain is
8% [91].

Foot and knee pain have been associated with numerous orthopedic
pathologies and injuries of the lower limbs. From high intensity functional
training (HIFT), such as CrossFit™, to Extreme Conditioning Programs, such
as those employed by the military and competing athletes, lower limb injuries

correlate highly with unevenly distributed plantar pressure and knee posi-


DBD
PUC-Rio - Certificação Digital Nº 1521397/CA


PUC-Rio- CertificagaoDigital N° 1521397/CA

Chapter 1. Introduction 15

tioning during long-term physical practice and can lead to severe orthopedic
injuries if the movement pattern is not amended. Therefore, the monitoring of
foot plantar pressure distribution and the spatial and temporal characteristics
of foot and knee positioning abnormalities is of utmost importance for Repet-
itive Strain Injury (RSI) prevention. The most common methods employed
by physical educators for the diagnosis of plantar pressure and knee position-
ing abnormalities are based on human observational approach, predominantly
subjective, which is neither reliable nor scalable to a large group of individuals.

CrossFit™ HIFT is a strength and conditioning program promoted as
both a lifestyle philosophy and a competitive sport. It incorporates a wide
range of exercises, typically performed in a timed or circuit format, including
routines adapted from (i) Olympic weightlifting and power-lifting, (ii) gym-
nastics, and (iii) traditional aerobic exercises, such as running and rowing
[64]. CrossFit™ is described by its proponent as a “constantly varied, high-
intensity, functional movement workout” [30]. Formally established in 2000,
after two decades there are over 12,000 certified and registered CrossFit fit-
ness centers worldwide - around 450 certified and registered CrossFit fitness
centers in Brazil, with approximately 40,000 Athletes. Although the major-
ity of the CrossFit™ Athletes are above 21 years of age worldwide, there has
been studies, such as [20], suggesting that CrossFit™ should be incorporated
into the physical education curriculum of secondary schools. These studies do
not address the long-term health risks of HIFT practice during adolescence. A
typical CrossFit™ class is an hour long and includes (i) a warm-up, (ii) a skill
development segment, (iii) the high-intensity Workout of the Day (WOD), and
(iv) a period of individual or group stretching.

Many studies focused on CrossFit™, such as [9] and [85], indicate that
this combination of high intensity exercise performed in a group-based setting
is effective in improving general fitness, aerobic capacity, muscular endurance
and body composition. The same studies also suggest that highly technical
exercises performed for high numbers of repetitions, with the subject under
the influence of fatigue, leads to poor technical execution and thus pose an
RSI risk to participants. In addition to that, a joint paper presented by the
Consortium for Health and Military Performance and the American College
of Sports Medicine expresses concern over the high injury rates of extreme
conditioning programs and correlates these injuries with the development of
rhabdomyolysis, a serious syndrome that can lead to renal failure [33].

In addition to the risks of physical injuries, some studies, such as [51],
investigate the prevalence of exercise addiction in CrossFit™ populations,

employing the Exercise Addiction Inventory (EAI). The EAI is a self-report
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that examines an individual’s beliefs toward exercise, proposed in [92] and used
in some of the surveyed works. The inventory is composed of six statements,
concerning: (i) the importance of exercise to the individual, (ii) relationship
conflicts due to exercise, (iii) how mood changes with exercise, (iv) the
amount of time spent exercising, (v) the outcome of missing a workout, and
(vi) the effects of decreasing physical activity. Athletes addicted to physical
practice are at a greater risk of negative consequences related to their exercise
addiction, such as injuries, illness, loss of social relations and associated mental
disorders [51]. The study found that there was no significant difference between
CrossFit™ and other fitness activities, although the addiction is more prevalent
in young practitioners - below 30 years of age - and in males.

As discussed in [97], the injury rates among CrossFit™ practitioners vary
according to the type of training program followed: (i) gymnastics-based ex-
ercises, (ii) powerlifting-based exercises, or (iii) endurance-based exercises. In
gymnastics-based exercise programs, the shoulder is the most commonly in-
jured body area. In powerlifting oriented exercise programs, the most com-
monly injured body area is the lower back. Lastly, in endurance-based exercise
programs the most commonly injured body areas, in order of occurrence, are
the shoulder, the lower back and the knee. This study also suggested that
there was no significant difference in injury rate based on age, length of train-
ing or weights lifted by the participants. However, males were significantly
more liked to injure themselves than females. Although the overall injury rate
found in this study was around 20% - injury rate varied according to the type
of training program followed and the methodology employed in the survey -, all
participants were professional athletes. Another research [36], with a broader
participant base composed mostly of non-professionals, found an injury rate of
73.5% considering the six months prior to the evaluation, and 10.5% of those
that sustained injuries required surgical intervention. Many studies, such as
[97] and [17], showed a significant correlation between injury level and coach
supervision, as seen on Table 1.1. No study investigated the correlation be-
tween injure rates and coach experience, feedback quality or class sizes. The
CrossFit™ organization does not directly supervise its certified and registered
CrossFit™ fitness centers, nor does it require them to perform the program-
ming that is produced each day by CrossFit™ headquarters in Washington,
DC. Certified and registered CrossFit™ fitness center owners are required to
have a CrossFit™ L1 certification, yet no further training is necessary. There-
fore, there is a wide variation in instruction and feedback quality between
CrossFit™ Certified and registered fitness centers based on the experience

and personal characteristics of the owner and coaches [97]. Enhancing the ca-
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Injury Rate Versus Trainer Presence

Trainer involvement No Injury Injury
All the time 85.4% 14.6%
Most of the time 75.6% 24.4%
Some of the time 69.0% 31.0%

Table 1.1: Weisenthal et al. [97]

pability of a trainer to provide adequate feedback to CrossFit™ practitioners
is, then, key to mitigate the probability of RSI by cause of training.

Human Activity Recognition (HAR) is an active and fast growing field of
research, and its methods using feet and knee movement and posture informa-
tion are recently drawing attention of different research fields such as mobile
healthcare, sports performance and ergonomics. Researchers investigate the
recognition of human movement patterns and behaviors to better understand
our actions and their context, to detect misguided action and to help people
perform better in their daily life or professional activities. Traditionally, the
equipment used to track and process these movements patterns were invasive,
expensive and unsuited for outdoor experiments, but the development of In-
ternet of Things (IoT) wearable technologies allowed researchers to investigate
HAR related questions without the constraints of a laboratory or a prepared
environment. From fall risk assessment of elderly patients [4] and rehabilitation
of stroke patients [21] to energy expenditure estimation of Activities of Daily
Living (ADL) [80, 81] and the recognition of a performer’s dancing steps to
provide real-time feedback [94], literature shows promising results and interest-
ing applications of IoT technologies. Currently, there are two main approaches
for collecting user’s feet movement and posture data: (i) image processing and
(ii) wearable sensors. Image processing techniques require camera installation,
thus making outdoor operation more expensive and rising privacy concerns
[16]. By contrast, the wearable sensors approach used by our work allows for
easier outdoor operation, trading-off lightning and image concerns for issues re-
garding skin allergies, battery charges, prototype resilience and the positioning
of sensors.

This work presents a study for foot and knee movement and posture
analysis of individuals to help the assessment and correction of their move-
ments during training, aiming to mitigate the probability of RSI during the
execution of functional exercises. Our solution employs an [oT wearable device
with a novel sensor array and a machine learning HAR activity classifier for
movement pattern recognition. The wearable device comprises three compo-

nents: an US men’s size 8.5 insole that houses the plantar pressure sensors, an
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external protective case that houses the microcontroller and the foot sensors
and a knee band that houses the knee sensors. It is equipped with a set of 16
sensors and can collect detailed foot and knee movement and posture infor-
mation every 10ms, providing a feature-rich stream of data for processing and
analysis. The machine learning HAR activity classifier employs a Random For-
est algorithm to recognize, within a set of 13 activities, whether the movement
pattern is correct or inaccurate. The experimental results show that the HAR
classifier achieves an overall accuracy of 87.08% for the recognition of activities
and 67.51% for the user feedback. After classification, the IoT wearable device
uses a component that provides real-time haptic feedback to the user to warn
whenever an inaccurate movement pattern is performed.

We performed a literature review on HAR using Internet of Things (IoT)
devices and wearable sensors, discussed in chapter 2, which unfolded the intense
growth on the number of publications related to the analysis of feet posture
and movement in recent years. Throughout the review, we observed that (i) all
works aimed at a complete substitution of the human agents, (ii) most works
employed a small number of participants, usually 5 or less, (iii) the number or
activities recognized - i.e the size of the assessed activity model - is often small,
with a median of 3 and a mode of 1, (iv) there was no diversity of participants’
profiles, (iv) no previous work thoroughly addressed the relevance of the
sensors employed for the assessed activity model, (v) few works provided public
datasets for benchmarking, (vi) there is no sufficient information on sensors
deployment, (vii) few works addressed their sample rates and time window size
choices and (viii) few works addressed the positioning of the plantar pressure
sensors. The lack of published datasets, the insufficient information for the
replication of these studies and the overall obliviousness of other work’s results
points to a lack of maturity of the area.

Two experiments were conducted to develop and validate the functional
exercise execution quality assessment model. The objective of the first experi-
ment was to build a machine learning HAR activity classifier, and it employed
twelve volunteers carefully selected for their diverse characteristics, since a
common limitation of the surveyed works is the prevalence of homogeneous
participants. We employed participants from both genders and diverse age
categories, some of which with disabilities, such as class IT obesity, severe knee
injury and blindness. Each participant performed 3 sessions of 30 minutes of
functional training monitored by a certified physical educator, following a rou-
tine consisting of the 13 activities of our activity model. Subsequently, we
conducted a second experiment with nine of the original twelve participants,

consisting of a 30-minute session followed by a semi-structured interview to
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evaluate usability and user experience questions. The objective of the sec-
ond experiment was to validate our HAR classifier and the quality assessment
model. Our results demonstrate the feasibility of our real-time feedback system
and the supporting role it can perform for early intervention and prevention of
orthopedic injuries, by providing a mobile, easy to use and affordable long-term
monitoring of individuals.

The main contributions of this work are an IoT device blueprint for
HAR research with a novel sensor array, a public domain dataset obtained
from an experiment with 13 diverse individuals and, above all, a method
for enhancing the capability of health professionals to assess the quality of
execution of functional exercises. In addition to that, this work also presents (i)
a comprehensive literature review of wearable-based HAR research using feet
movement and posture information, (ii) an auxiliary literature review focused
on HAR research using wearable sensors for collecting feet movement and
posture information and (iii) an analysis of the relevance of different types
of sensors for the building of a HAR classifier based on feet movement and
posture information.

The main and auxiliary literature reviews are presented in chapter 2. In
chapter 3 we detail the design process of the IoT device prototype and the
sensor deployment choices, in addition to hardware and software replication
information. The experiment conducted to collect activity data, and its details,
is discussed in chapter 4, along with the development of the activity model and
the classifier. In chapter 5 we describe the second experiment, in which the
proposed model of quality assessment for functional exercises is validated, and
the usability and user experience evaluation, addressing the main concerns of
the prototype usage and the quality assessment process. Conclusion and future

work are discussed in chapter 6.
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2
Literature Review

This chapter presents a literature review about wearable-based research
projects using feet and knee movement and posture information focused on
health and sports activities. We conducted the literature review in four steps:
(i) definition of a research question and its sub questions, (ii) formulation of
a search query string, (iii) definition of exclusion criteria and (iv) completion
of a quantitative and qualitative data analysis. The research question posed in
this work is: What are the wearable-based HAR research projects conducted
in recognition of sports and health-related activities using feet movement and
posture information?

This research question was broken down into six sub-questions:

— RQ1. How was the incorrect execution of activities addressed?

— RQ2. How was the activity model structured?

— RQ3. How was the model validated?

— RQ4. What activity classifier was built?

— RQ5. How much data was analysed?

— RQ6. What hardware and software setting — types, quantities and

locations of the sensors — were assembled?

Based on these questions, we formulated the following a search query
string: (((((Daily Activities) OR Activity Recognition) OR Monitoring) OR
Detection) AND ((((((Insole) OR Foot) OR Knee) OR Plantar) OR Shoe) OR
Gait)). Results were refined by the publication year range to exclude works
not published in the last 12 years, obtaining over four hundred search results
combining the ACM Digital Library, IEEE Xplore, SciELO and Springer
databases. The publication year range criteria was employed to exclude works
based on deprecated hardware or software components. Our search suggests a
recent surge of interest in investigating the use of embedded sensors in shoes
and insoles for gait and ADL monitoring and analysis, as shown in Figure 2.1.

We defined a strict exclusion criteria, as follows:

— Image processing HAR or the use of other non-wearable sensors;
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— Research about plantar sensor distribution or gait segmentation and

analysis;

— Research about insole, shoe and eTextile development for feet plantar

pressure monitoring; and

— Different goals, such as recognition of environment characteristics.
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Figure 2.1: Recent surge of interest in investigating the use of embedded sensors
in shoes and insoles.

The resulting works were individually analyzed using the proposed
exclusion criteria. The remaining 78 works may be grouped into three distinct
research categories: (i) user feedback and performance assessment: works
focused on the assessment of the quality of execution of an activity to
provide feedback to individuals; (ii) activity recognition: works focused on
the recognition between activities of an activity model; and (iii) prevention or
treatment of injuries and diseases: works that, regardless of focus on recognition
or quality assessment and feedback, aimed at preventing, or helping prevent,
injuries and diseases. In addition to the works retrieved during the literature
review, we contacted experts and asked for suggestions of related research.
The work presented in [57], though excluded by the applied criteria, was

recommended by an expert.
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2.1
User Feedback and Performance Assessment

The study presented in [57] uses the off-the-shelf Microsoft Kinect device
to evaluate posture and analyze users movement, aiming at helping users
assess and correct their movements during a CrossFit training session. It is
based on four key points: (i) individual monitoring, (ii) audible feedback, (iii)
detailed report and (iv) non-invasive monitoring. The researchers developed a
system based on the Kinect Sensor and the Skeleton Basics-WPF application
to recognize particular movements, monitoring the variation of the joint angles
and sending instantaneous audible feedback to users correct their postures. One
major limitation of this study is the focus on only one exercise, the thruster,
within a restricted context. In addition to that, the methodology employed is
not capable of measuring GCFs, a key factor in assessing the risk of RSI, as
discussed in chapter 1. Other limitations of this study are (i) the use of image
processing equipment and techniques that are not adequate to monitor groups
of practitioners, (ii) the absence of detailed information regarding how the
benchmark movement was defined, and (iii) the audible feedback, inadequate
for CrossFit™ classes by reason of practitioners being typically exposed to high
sound levels for motivational purposes. The study suggests that the developed
application provides a coach-like feedback that can be used to substitute such
an expert.

The works proposed by [14] and [3] use upper and lower body accelerom-
eter data to provide, respectively, feedback to swimmers and rowers. In [14],
a sensor system is used to extract lap times and stroke counts for each lap
of the pool, achieving good overall results. However, in [3], even though the
experiment was successfully conducted by providing users with immediate
feedback, no improvements were found for performance-related parameters.
Another work focused on rowers collects femur and lower back kinematic data
through an accelerometer-based body sensor network (BSN) [47]. The proposed
system was used, alongside optical tracking, to distinguish between good and
poor rowing techniques. The study conducted in [19] devises a wearable sys-
tem using FSR pressure sensors positioned on the shoe’s soles to acquire raw
sensor data, similarly to most surveyed works. Instead of using the common
standing-walking-running activity model, it maps user’s activities into dancing
steps: ball taps, heel taps, forward steps, and backward steps. FEach dancing
step is matched to music beats, and the difference between the performed and
the expected step is given to the participants in real-time auditory feedback.
Also, in [7], an experiment was conducted with professional swimmers to help

improve their performance. The researchers used acceleration sensors to mon-
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itor relevant swimming parameters for a continuous performance evaluation,
while also offering visual, audio, and haptic feedback to swimmers. After test-
ing four feedback modes, visual signs were chosen for their fastest reaction
time. In the ongoing work presented by [63], an experiment is being conducted
with professional skiers aiming at improving the trainer-athlete relationship.
Through the usage of wearable sensors and visualization software, participants
were able to share their observations and impressions. Another work aiming
at benefiting athletes with immediate feedback during training is presented
by [6]. The researchers propose feedback systems for rowing, table tennis, and

biathlon professional athletes, providing detailed hardware information.

2.2
Activity Recognition

Common movement activities, such as walking, sitting, and standing
up, are the most common type of activities studied in this research group.
Many works, such as [16], [22], [42], [19] and [18], rely on plantar Force-
sensitive Resistors (FSR) pressure sensors to classify user activity according to
a previously elaborated activity model. Other works, such as [31] and [62], rely
on inertial motion units (IMUs) located on the user’s feet for that purpose.
Sensor fusion - FSRs and IMUs - is employed by works such as [89], [80],
[39] and [56], achieving good overall results. Only a few of the surveyed works
used sensors other than ground contact force (GCF) sensors and IMUs, such
as infrared sensors [46] or capacitive sensing technology [35] and [61]. The
work in [46] presents a novel approach by using an infrared sensor positioned
onto the shoe’s surface and machine learning models to classify among six
activities. It is also the only work presenting a comparison between accuracy
results using one or two shoes. In [35] researchers used capacitive sensing
technology, placing the sensors on the user’s chest, leg, and foot to detect
movement and classify among five activities. The reason to use capacitive
sensing technologies is its accuracy at low speeds and tiny step lengths, typical
of the elderly and patients with pathological conditions that participated in
the study, contrary to accelerometer-based detection that can provide high
deviations. Capacitive sensing technology is also used in [61], where the
researchers use a smart insole to identify users and, above all, distinguish
between floor types. Differently, [95] proposes a novel approach using ultrasonic
sensors in a wearable platform to monitor lower limb movements and patterns.
Although it is an ongoing work, the results show that ultrasonic systems may
be successfully used for gait analysis in running and jogging. The researchers

in [59] use in-shoe wearable-based sensor technology for gait and turning
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assessment of patients with postural instability due to to Parkinson’s Disease.
The wearable-based sensor technology used in their experiment allowed for
static and dynamic posturography in clinical and home environments — an
important assessment for orthopedic diagnosis. In [13], researchers investigate
the use of two synchronized insoles for automatic gait phase segmentation using
64 plantar pressure sensors each, showing results in line with those obtained
using other methods such as [49]. The study presented in [49] criticizes the
use of FSRs, supported by a brief discussion about their low durability and
non-linear responses. As a novel alternative to FSRs, the researchers propose
the use of four air pressure sensors - air bladders - in each insole.

Some studies positioned extra sensors in other places beyond the user’s
feet, such as [101] and [94]. In [94], sensors are also placed onto the user’s
arm, thigh and waist, obtaining almost 100% activity classification accuracy,
although with a restricted activity model comprising walking, sitting down
and standing up. In [101], one IMU is placed on the user’s waist to help
classify activity among zero displacement activities, transitional displacement
activities and strong displacement activities. All activity recognition works
discussed in this section use very similar activity models comprising sitting,
standing, running, walking and slope-walking activities. Henceforth, the main
difference being these works is the machine learning algorithms applied and
the context of the experiments. Two of the activity models proposed by
the works of this section, [100] and [55], are more comprehensive than the
prevailing standing, walking and running activity models. Both relied on sensor
fusion techniques to classify user’s activities and obtained promising results.
In [100], the researchers used four plantar FSR pressure sensors and an IMU
capable of 9 degrees of freedom motion sensing on the user’s smartphone. They
were able to classify activity as walking, cycling, bus-passenger, car-passenger
and car-driving, using decision tree machine learning techniques. The work
in [55] combined a 48-sensor FSR array and an IMU capable of 9 degrees
of freedom motion sensing within each insole to predict activities with 99%
accuracy. Another major contribution of those studies is their activity model
that includes transitions between ADLs, such as descending stairs to walking
or walking to sitting down, in addition to the activities themselves.

The work in [70] presents an extensive research using wearable sensors to
understand the best signal processing, sensors and classification methods for
classifying health-enhancing physical activities such as walking, running and
cycling. It discusses how each activity is best characterized and what sensors
should be used to recognize them. Likewise, in the work proposed by [23],

activity recognition using wearable sensors provides lifestyle feedback regarding
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health-enhancing physical activities. However, contrary to the previous study,
this one focuses on non-lab activities and sports in non-monitored settings.
Considering the proposed activity model, results showed that using both
unsupervised and supervised data for machine learning yields similar results
to using only supervised data. The work in [50] proposes an optimal sensor
set for gait identification of patients with dropped foot for clinical evaluation.
This sensor set consists of three IMUs capable of six degrees of freedom, placed
onto users thigh, shank and foot of the impaired leg. The study identifies the
best sensor orientations and attachment positions, whilst accurately identifying
gait events. Finally, it suggests that the system could be used to analyze other
walking conditions during daily activities.

Many of the surveyed studies, conducted in the recognition of activities,
were related to healthcare and well-being. The theme of stroke rehabilitation
is being investigated, in recent years, by many researchers, such as in [99], that
measures the activity level of people with stroke, and in [21], that recognizes
activities and postures to provide behavioral feedback to patients recovering
from a stroke. Although the majority of the works focused on healthcare and
well-being, some, such as [27], investigated the use of foot-based gestures,
named foot plantar-based (FPB) gestures, to control computing devices. Shoe-
based wireless sensor platforms developed specifically for medical studies, such
as the SmartStep [41], were employed by many other health-related studies.
In [40], the platform was used to develop an Android application to capture
data from the wearable device and provide real time recognition of a small
set of activities. In [79] and [81], the SmartShoe platform is used for energy
expenditure estimation after the classification of the activities performed by the
user, and in [82] it is further used to predict body weight. The same platform
is then used by [29] and [28] to identify activity levels and steps in people with

stroke.

2.3
Prevention and Treatment of Injuries and Diseases

The prevention and treatment of injuries and diseases is the second most
prevalent theme of research found in the HAR literature review, after gait
analysis. The research presented in [53] and [54] recognizes that the first step
to reduce caregivers’ risk of overexertion injuries is to identify patient handling
activities (PHA). It extends the work presented in [55], which uses an eTextile
fabric with 48 plantar pressure sensors and an IMU capable of nine degrees
of freedom, to detect user activity and identify awkward postures that might

lead to injuries. Despite the complexities of the interaction between users and
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loads (e.g., patients and instruments), both studies show promising results.
In works such as [2] and [5], researchers propose an accelerometer-based
wearable framework for recognizing athletes’ activities in outdoor training
environments. They aim at identifying (i) potential injury or performance
determining factors, (ii) users in the early stages of a developing injury,
and (iii) a predisposition to injury based on movement patterns. In this
work, the researchers performed an experiment to monitor thigh and shank
movement and posture during jogging, achieving good overall results. In [67],
the researchers present a pair of shoes that offer low-cost balance monitoring
non-lab environments. The shoes use features identified by geriatric motion
study experts to monitor balance and predict fall risk, demonstrating the
feasibility of a model of instability assessment. This lightweight smart shoes
platform is based on the MicroLEAP wireless sensor platform [4], and uses
an IMU and FSR pressure sensors embedded inside each insole for data

acquisition.
2.4
Literature Review Discussion

To better evaluate patterns, common strengths and weaknesses of the

surveyed works, we collected, whenever available, the following research data:

Number of activities in the activity model;

Number of subjects;

Number of data samples collected; and

Test technique and results.

The collected research data, addressing research questions 2, 3, 5 and 5,
is summarized on Table 2.1. In the interest of comparison, the metadata of this
work was added to the first row of the table. Some works on this table achieved
multiple different accuracy results, since they addressed multiple challenges.
This table presents only the accuracy results of activity recognition classifiers.
All dataset size is rounded to the nearest thousandth.

The measuring of GCFs is the most prevalent approach used by the
surveyed works for the task of recognizing user activity, being present in 16
of the 24 studies, while the second most common approach, present in 12 of
the 24 studies, is the use of IMUs. Considering the IoT devices presented in
the literature, two characteristics impair their reproducibility: (i) the lack of
information about the IMUs orientation and (ii) the absence of sensor model
information or specification. Most of the works analyzed, 22 out of 24, provided

detailed information regarding the models of their activity classifiers, but only
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Metadata Summary

Author Model  Subjects Data  Technique Results
de Pinho et al. 13 12 1M 10-Fold ~87%
Crea [13] 5 5 - Leave-one-out  ~96%
De Santis [16] 4 - - - -
Doppler [18] 3 4 36k  10-Fold 99.6%
Drobny [19] - 16 - - -

el Achkar [22] 3 5 - - 93.4%
Fukahori [27] 15 20 - - ~99%
Ghobadi [31] 3 3 - 99.7%
Haescher [35] 5 13 9k Leave-one-out  ~89%
Holleczek [42] 2 1 - 4-Fold 100.0%
Jiang [46] 6 4 - 10-Fold ~94.0%
Kong [49] 6 1 - - -

Lin [55] 8 8 - 86.6%
Lin [56] 5 10 % - 99.0%
Matthies [61] - 13 - 10-Fold 90%
Tang [89) 6 9 21k Leave-one-out 99.0%
McCarthy [62] 4 13 - - 90.0%
Edgar [21] 3 3 - - 99.0%
Noshadi [67] - 12 - - -
Sazonov [80] 6 9 - 4-Fold 98.0%
Sazonov [79)] 15 15 - Leave-one-out  95.0%
Ugulino [94] 1 4 165k  10-Fold ~99.0%
Zhang [99] 8 12 - Leave-one-out  ~80%
Zhang [100] 5 10 7k 10-Fold 90.0%
Zhu [101] 3 1 - -

Table 2.1: Literature review metadata: methods and results.

12 studies detailed the test techniques used in the activity classifiers — 7 of
which used k-fold cross validation and 5 used leave-one-out. Although most
studies state that tests were performed, they provide no detailed information
about these tests. The success rate of ADL recognition of the surveyed works
fell into the 80% - 100% range. All works analyzed in this section use the model
of gait phases proposed by [72]. Addressing research question 1, the surveyed
works’ approach to activity execution is binary, considering a performed
activity as either correct or incorrect. No grading or qualitative analysis of
execution mistakes were discussed in the surveyed works.

It was also observed that 21 out of 24 works provided information on
the number of participants, but only 6 of the 24 studies provided information
on the dataset size. The main issue detected in the literature review is the
absence of publicly available datasets, impairing that way the understanding
of the results. Knowledge of datasets is especially important to assess works

that use similar (i) sensor selection, (ii) sensor placement, and (iii) activity
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models. As discussed in [101] and [98], dataset disclosure is crucial for bench-
marking purposes, given that classification algorithms rely heavily on datasets.
Beyond dataset size, sample rates and time window durations also affect the
understanding of the results. Only 16 of the 24 surveyed works provided infor-
mation on the sample rates, and 8 of those 16 also provided information on the
time window size. The prevailing suggestions for future works and contribution
found in the literature are to (i) increase the data set through longer data col-
lection intervals and the diversification of participant’s profiles and (ii) adapt
the activity model to a specific challenge, such as helping patients to avoid
falls. As noted in [73], the prevailing suggestions for future works and contri-
bution found in the literature are (i) the increase the data set through longer
data collection intervals and the diversification of participant’s profiles, (ii) the
improvement of the selected classification algorithms, and (iii) the adaptation
of the activity model to a specific challenge, such as helping patients to avoid
falls, instead of a more broad task, such as monitoring patients’ balance. To
make the literature review presented in this section replicable, we provided
(i) the search query string, (ii) the exclusion criteria, (iii) information about
the selection process and (iv) the surveyed publications in RIS format in the
following web address: https://goo.gl/60zm26.

The challenge of adequately positioning the GCF sensors is recognized
as a very important factor by studies such as [83] and [58], although it
is not thoroughly addressed by any of the surveyed works. To understand
the literature recommendations of sensor deployment before the development
of the IoT wearable device, we collected, whenever available, the types,
quantities and locations of the sensors employed by the surveyed works.
No work addressed the sensor mix choice besides stating that its selection
is commonly found throughout the literature. The sensor data, addressing
research question 6, is summarized on Table 2.2. In the interest of comparison,
the metadata of this work was added to the first row of the table. The table
is divided into three segments: (i) the upper segment summarizes works based
on GCF sensors, predominantly FSRs, (ii) the middle segment summarizes
works based on inertial sensors, and (iii) the bottom part summarizes works
that employed sensor fusion. No work provided detailed information regarding

sensor positioning.
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Summary of sensor selection and positioning

Author Sensors Positioning

de Pinho et al. FSR, IMU & IR Insole, Shoe & Knee

Crea [13] FSR Insole

De Santis [16] FSR Insole

Drobny [19] FSR Insole

el Achkar [22] FSR Insole

Fukahori [27] FSR Socks

Holleczek [42] FSR Socks

Lin [55] FSR Insole

Zhu [101] FSR Shoe & Waist

Kong [49] GCF Insole

Ugulino [94] Accelerometers Waist, Thigh, Arm &
Ankle

McCarthy [62] Gyroscope Shoe

Doppler [18] IMU Insole & Shoe

Ghobadi [31] IMU Shoe

Edgar [21] FSR, IMU Insole

Lin [53] FSR, IMU Insole & Shoe

Tang [89] FSR, IMU Insole

Zhang [99] FSR, IMU Insole & Shoe

Zhang [100] FSR, IMU Insole & External

Noshadi [67] FSR, Gyroscope & Insole, Shoe & External

Accelerometers

Sazonov [79, 80, 81, 82]
Jiang [46]

Matthies [61]

Haescher [34, 35]

FSR & Accelerometers
IR

Capacitive Sensing
Capacitive Sensing

Insole and Shoe

Shoe

Insole

Chest, Leg and Insole

Table 2.2: Literature review metadata: sensor positioning.
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loT Device Prototype

In this chapter, we present the wearable IoT device prototype used to
collect functional training data. To allow for the reproduction of this research,
we provide detailed hardware information - types, quantities and models for
each component.

Since battery lifetime is a major concern for studies outside of a labora-
tory environment and the participants came from diverse technological back-
grounds, the key design goals were to develop a low power consumption device
capable of extended operation that was easy to use during the experiment.
Aiming at a user base as diverse as possible, we followed the prototyping prin-
ciples discussed in [73] and [74]. To reach these goals, we developed a wearable
[oT device that (i) uses only the power button, (ii) requires only one functional
foot to collect user data, and (iii) transmits data for external processing. We
opted to use a single insole in the experiment to reduce prototyping costs
and to broaden our user base, since the literature suggested that the loss of
information when compared to experiments collecting data from both feet is
minimal [46] and [75]. The wearable device comprises three components: (i)
an US men’s size 8.5 (see Table 3.1) insole that houses the plantar pressure
sensors, (ii) an external protective case that houses the microcontroller and
the foot sensor array, and (iii) an external protective case that houses the knee
sensor array. The use of an US men’s size 8.5 insole allows for - although with
minor discomfort felt at extreme ranges - the participation of volunteers within
the US men’s size 7.5 to the US men’s size 10.5 range.

The insole employs six GCF sensors following the literature’s recommen-
dations for placing discussed in [83], [72] and [60], in addition to the lessons
learned from the prototypes presented in [73], [76] and [74]. We used the FSR
402, by Interlink Electronics [45]- a PTF (Polymer Thick Film) device that
exhibits a decrease in resistance as the force applied to its active surface in-
creases - and Amphenol Clincher Connectors, by FCI [24], to avoid melting or
distorting the silver traces of each sensor. Given that each FSR needs a static
resistor to create a variable voltage for the microcontroller’s Analog to Digital
Converter (ADC) inputs, we placed six 10K ;11147 resistors inside the insole -

one resistor next to each FSR. GCF sensor positioning is shown in Figure 3.1.
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Shoe Size Comparison Chart
USA and Canada, Men 7 7.5 8 85 9 10.5 11.5

Europe 39 40 41 42 43 44 45
United Kingdom, Men 6.5 7 75 8 85 10 11
United Kingdom, Women 6 6.0 7 75 8 9.5 10.5
USA and Canada, Women 85 9 9.5 10 10.5 12 13

Japan, Men 25 255 26 265 275 285 295
Japan, Women 24.5 25 25.5 26 27 28 29
Mexico 55 6 6.5 7 75 9 10
Brazil 37 38 39 40 41 42 43
Australia, Men 6.5 7 75 8 85 10 11
Australia, Women 85 9 9.5 10 10.5 12 13

Table 3.1: Comparison between US men’s sizes and other standards.

o D

Figure 3.1: GCF sensor positioning.

The main component of the foot external protective case is the Electron,
a 3G-enabled microcontroller from Particle.io [71], shown in Figure 3.2. This
microcontroller was developed for cellular-connected electronics projects that
require low-bandwidth, and contains all inputs, outputs and communication
protocols necessary for the presented IoT wearable device prototype. The
component collects data from the foot sensor array and streams the data
to the remote database. For the accelerometer, gyroscope and magnetometer
sensors responsible for monitoring the feet posture and movement, we used the
SparkFun 9DoF IMU LSM9DS1 Breakout [88], a system-in-package component
that houses a 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer
sensor array that is capable of digital communication with the Electron
microcontroller. The LSM9DS1, shown in Figure 3.3, is used to measure the
key movement properties of the foot - angular velocity, acceleration, and
heading - in three dimensions. The barometer selected for the experiment is
the MPL3115A2 [68], by Freescale Semiconductor, a low power, high-precision

altitude and pressure, shown in Figure 3.4. For the distance sensor we used
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two of the RED77402 3D ToF (Time of Flight) by Simblee [84], a low-cost
accurate sensor that allows millimeter readings up to two meters, shown in
Figure 3.5. The RFD77402 uses an infrared VCSEL (Vertical Cavity Surface
Emitting Laser) module to measure the amount of time the emitted light takes

to bounce off a target.

Figure 3.2: The Particle.io Electron.

The Electron microcontroller and its board, along with the MPL3115A2
and RFD77402 sensors mentioned above, were positioned in the ABS 3D
printed external protective case, shown in Figure 3.6. The prototype is powered
by a 2,200 milliampere hour (mAh) lithium ion battery pack by Sparkfun
Electronics [87], allowing for an easier, faster replacement and improved
usability.

The knee external protective case houses a second SparkFun 9DoF IMU
LSMYDS1 Breakout to measure the movement properties of the knee, and is
connected to the foot external protective case by a flexible cable, shown in
Figure 3.7.

The software model used in this work is based on the model proposed in
[73] and [75], comprising two components: the embedded software running on
the microcontroller and the application server. The microcontroller software is
responsible for (i) acquiring the raw sensor data, (ii) structuring the data
in JavaScript Object Notation (JSON) format, and (iii) transmitting the
structured data over 3G to the application server. The application server

is responsible for processing and logging the streamed data to Firebase
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Figure 3.3: The LSM9DS1 IMU.

Realtime database - tasks not suitable for the embedded microcontroller
due to its hardware limitations. The Firebase Realtime Database is a cloud-
hosted database supported by Google that stores data in the JSON format
and synchronizes to every connected client. The authors made available the

complete and commented source code of the application server in [73].

3.1
Analysis of the Sensor Mix

This section analyses the sensor mix selection of the IoT device prototype
used in this work. As discussed in chapter 2, no work addresses sensor selection
choices and concerns. In [74], we conducted an experiment to understand
the relevance of the most pervasive sensor types in the literature for the
building of HAR classifiers for the most commonly-found activities - walking
straight (2km/h), walking slope up (2km/h), walking slope down (2km/h),
slow jogging (6km/h), slow jogging slope up (6km/h), slow jogging slope
down (6km/h), ascending stairs, descending stairs and sitting. The experiment
employed the [oT device prototype previously described, built with a sensor
array containing all sensors found in the surveyed works. We collected data
from twelve participants to build and validate a baseline model - a model that
makes use of all sensor raw and derived features. Different learning strategies
were experimented to build the classifier for our 9-activities activity model,

resulting in the selection of the Random Forest Algorithm, given that its
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Figure 3.4: The MPL3115A2 barometer.

average performance of 91.26% was superior to the other ones. For validation,
we used the Leave-one-out Cross Validation, since this method guarantees
that both training and test splits do not share any example data. In total,
12 features were utilized to build the classifier: 2 axis of the gyroscope, 2
axis of the magnetometer, 1 axis of the accelerometer, 4 FSRs, 2 Euler angles
and the cumulative difference between samples of the barometer. The features
selected for the baseline classifier provided valuable insights for the next step,
the analysis of sensor type relevance. After experimenting several time window
sizes during the classifier construction, we decided to use a 0.3s one based on
our model validation results, registering an accuracy improvement of about
19% when contrasting the selected window (0.3s) and the largest time window
experimented (2.0s). Despite not taking any measures to address FSRs’ drift
over time, as discussed in [74], the overall classifier accuracy was satisfactory
- achieving top quartile performance when compared to the surveyed works.
Following the building of the baseline HAR classifier, we were able
to investigate the relevance and correlation of a feature with the average
classifier accuracy, for each sensor type. We used Hall’s algorithm [37] based
on correlation with its default 'Best Fit" configuration, a backtracking greedy
strategy. This method was selected based on its superior performance when
compared to the other feature selection methods found in the surveyed works.
The work in [94] also uses this same method to reduce feature redundancy

and still achieve better-than-average results. Based on the results commonly
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Figure 3.5: The RFD77402 distance sensor.

Figure 3.6: Shoe external protective case.

found in the literature, we already expected to see gyroscope, accelerometer
and FSR features showing high correlation and being used in the building
of the classifier. However, the results achieved by Hall’s algorithm suggested
which features were relevant and to what extent. Considering the baseline
model, the distance sensor showed a very low correlation and was not used
in the building of the classifier. Although distance sensors were successfully
employed by works such as [46], when presented with a broader sensor selection
the classifier did not make use of it. FSRs 4 and 6 showed a medium to low
correlation and were not employed, while the remaining FSRs showed a high
correlation. Considering that some of the surveyed works also used between
three to four FSRs with similar positioning, further investigation could lead

to evidence as to where to position the sensors for better recognition accuracy


DBD
PUC-Rio - Certificação Digital Nº 1521397/CA


PUC-Rio- CertificagaoDigital N° 1521397/CA

Chapter 3. loT Device Prototype 36

Figure 3.7: Knee external protective case.

Sensor Overall accuracy
IMU 66%
FSRs 60%

Barometer 29%
Distance 17%

Table 3.2: Single sensor classifier accuracy.

of the selected activities. Euler angles showed a high correlation and were
utilized by some of the surveyed works, making a strong case that they should
be evaluated during the feature engineering phase for similar activity models.
Finally, the barometer provided the feature with the second highest correlation
score, suggesting that this type of sensor should also be evaluated for similar
activity models. The topic of feature engineering and its methods are beyond
the scope of this research, so we used the features employed by the surveyed
works in our analysis.

To assess each sensor, raw and derived features, we built a HAR classifier
employing only its share of the total data and the same methods used to build
the baseline classifier: (i) Leave-one-out Cross Validation and (i) Random
Forest Algorithm. The average accuracy results are shown on Table 3.2, where
all values are rounded to the nearest whole number and ordered by average
accuracy.

Following that analysis, we combined the two most successful sensor
types, FSRs and IMUs, with all available sensor types. We built and validated a

classifier for each combination, and the average accuracy results for the better


DBD
PUC-Rio - Certificação Digital Nº 1521397/CA


PUC-Rio- CertificagaoDigital N° 1521397/CA

Chapter 3. loT Device Prototype 37

Sensor Owverall accuracy
IMU (9-axis) and FSRs 81%
FSRs and Barometer 1%
IMU (9-axis) and Barometer 70%
FSRs and Gyroscope 65%
FSRs and Accelerometer 60%

FSRs and Magnetometer 59%
IMU (9-axis) and Distance — 57%
FSRs and Distance 55%
Distance 17%

Table 3.3: Sensor Fusion classifier accuracy.

performing combinations are shown on Table 3.3, where all values are rounded
to the nearest whole number and ordered by average accuracy.

Although the results shown in Table 3.3 take into account the combined
FSRs, FSR1 to FSR4, we also evaluated FSR5 and FSR6 for the same combi-
nations, achieving less than 1% increase in average accuracy. The experimental
results show that (i) 9-Axis IMUs, (ii) 4-FSR arrays, and (iii) barometers were
the most relevant sensor types for the recognition of ADLs based on feet move-
ment and posture information, when considering a typical activity model with
the stand, walk, run and climb stairs activities. Above that, we learned that
accuracy can be greatly improved (15%) by the IMU and FSR sensor fusion,
so that approach should be considered in future research if it is needed to
(i) differentiate between similar activities or (ii) identify subtle variations of
the same activity. Lastly, the barometer sensor allowed for an increase of the
average accuracy by more than 10%, making a strong case for its adoption
whenever possible. We decided to keep FSR5 and FSR6 for this study, since
(i) our goal relies heavily on plantar pressure distribution analysis, (ii) it is
not based the typical activity model used in [74], and (iii) we were aiming
at recognizing the qualitative aspects of an activity - a challenge still scantly

addressed in the literature.
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4
First Experiment and HAR Classifier Building

In this chapter we describe the stages followed to develop the HAR
activity classifier for movement pattern recognition: planning the experiment,
conducting the experiment, acquiring data, processing the acquired data,

extracting and selecting features, building and validating the model.

4.1
Planning the Experiment

As discussed in chapter 1, the most commonly injured body areas in
functional exercise training, in order of occurrence, are the shoulder, the
lower back and the knee. Since the research conducted in [73] and [76]
allowed for the investigation of the movement patterns and positioning of the
lower limbs, it was necessary to understand if data collected from the foot
and knee of an individual was adequate to build a movement pattern HAR
classifier for functional exercises. During the planning of the experiment, we
conducted (i) non-structured open interviews with certified health professionals
and CrossFit™ Level 1 coaches and (ii) surveyed medical research focused
on functional training exercises to discern what musculoskeletal aspects are
responsible for the most prevalent injuries.

The most important activities in functional training exercise routines are
jumping, pulling and pushing [30]. The hip extensors, key to these activities,
are the muscles responsible for the straightening out of the hip joint from
its flexed position - the hip extension movement [15]. The hip extensors are
part of the posterior chain muscle group, a muscle group that comprises
the hamstrings, the glutes, and the adductors, shown in Figure 4.1. The
musculoskeletal aspects of the posterior chain are related with the most
prevalent injuries in functional training, and require the greatest amount of
outside input from coaches and training partners - in the absence of outside
reinforcement, correct execution form is the first aspect deteriorate [78].

Based on the medical research and the conducted interviews, we selected
the following functional exercises to add in our activity model: basic squat,
sumo squat, squat hold, basic step up, front lunge, and side lunge. Since the

classifier we proposed in [73] performed well, achieving 93.34% overall accuracy,
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Gluteus Medius Gluteus Maximus

Rectus Femoris

Vastus Lateralis
Pectineus

Tensor Faciae Latae Gracilis

. Semimembranosus
Sartorius

Adductor Longus Semitendinosus

Gracilis Biceps Femoris

Back

Figure 4.1: Hip Extensors: main and auxiliary muscles [90].

Front |

we were confident to extend the original activity model of 6 simple activities
to the current activity model of 13 complex activities for this experiment.

The squat, with its variations, is the only exercise in the repertoire of
weighted human movement that allows for the direct training of the complex
hip drive movement pattern - the active recruitment of the muscles of the
posterior chain. [78]. The basic squat is shown in Figure 4.2. In the squat
starting position, the individual stands straight with heels placed by shoulder
width. The hips and knees face forward, while the toes point outward at an
angle of around 30 degrees. Then, the individual slowly bend his knees and
pushes his hips backward, as if sitting back into a chair, until his thighs are
below parallel with the ground. In the bottom position the back should be
inclined at an angle of around a 45 degrees. In the final movement of this
pattern, the individual brings his hips up returning to the starting position.

The squat hold follows the same movement pattern, however, the individ-
ual keeps the bottom position for an extended amount of time, according the
the training regimen. The sumo squat is shown in Figure 4.3. This exercise is
a variant form of the basic squat, with two main differences: (i) the toes point
outward at an angle of around 45 degrees and (ii) the back, in the bottom
position, is kept straight.

The front lunge movement pattern is shown in Figure 4.4. The individual
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Figure 4.2: Basic squat: start and end positions [26].

stands straight with heels placed by shoulder width and hands either by their
sides or placed on their hips. Keeping the torso upright, they inhale as they
take a large step forward with one leg and lower the knee of his back leg until
it almost touches the floor. Then, the individual exhales as they drive back up
with their front leg and step back into a standing position. To complete the
full movement pattern, they repeat the lunge with his opposite leg.

The side lunge is a variant of the front lunge, and the movement pattern
is shown in Figure 4.5. The individual stands straight with heels placed by
shoulder width and hands either by their sides or placed on their hips. Keeping
the torso upright, they (i) inhale as they take a large step to one side, (ii) lower
their body by flexing their hip and knee and (iii) keep the back leg straight.
Then, they exhale as they push themselves back up to the starting position. To
complete the full movement pattern, they repeat the lunge with their opposite
leg.

The step-up movement pattern is shown in Figure 4.6. The individual
stands straight with heels placed by shoulder width and hands either by his
sides or placed on his hips. Keeping the torso upright, they inhale as they
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Figure 4.3: Sumo squat: start and end positions [26].

slowly step up onto the bench, leading with their right leg. Then, they bring
their feet together on the bench. Next, they inhale as they slowly step down
off the bench, leading with their right leg. Lastly, they bring their feet together
on the floor. To complete the full movement pattern, they repeat the step-up
with their left leg.

These exercises, when performed correctly, are the safest leg exercises
for the knees [78]. In addition to that, these exercises aid in the development
of the muscle groups that stabilize the knees, mitigating the risk of common
injuries and chronic conditions such as knee or back pain. The correct form,
when performing these functional training movement patterns driven by the
posterior chain, is based on (i) depth of movement, (ii) back positioning, (iii)
eye gaze, (iv) knee positioning, and (v) foot positioning.

The depth of the movement characterizes a full extension, with thighs
slightly below parallel with the ground. When the individual does not execute
the complete extension of the movement, they perform a partial extension.
Partial extension stresses the knees and the quadriceps without stressing
the glutes, adductors, or hamstrings. The angle restricts the posterior force
produced by the hamstrings, needed to oppose and balance the anterior force
exerted by the quadriceps and their attachment to the front of the tibia. The
difference between a full and a partial extension is shown in Figure 4.7. The
result is an anterior shear on the knees and, in addition, the probability

of a patellar RSI [78]. According to the information collected during the
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Figure 4.4: Front lunge: start and end positions [26].

Figure 4.5: Side lunge: start and end positions [26].

pre-experimental interviews and the surveyed literature, this aspect of the
movement pattern execution is easily observed by a trained coach - even when
dealing with a large class.

The correct back positioning is based on the back angle, shown in
Figure 4.8. The hip angle is formed by the plane of the torso and the femur.
The knee angle is formed by the femur and the tibia. The back angle is formed
by the plane of the torso and the floor. Although each functional exercise
requires a different back angle, this aspect is also easily observable. Lumbar
overextension, shown in Figure 4.9, is an execution mistake that indicates a
failure to engage enough abdominal contraction to support the spine, and can
lead to severe back injuries. Experienced coaches observe wrinkles that appear
in the cloth of the shirt to detect if the lumbar is overextended.
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Figure 4.6: Step-up: movement pattern [26].

Figure 4.7: Difference between full and partial extensions [78].

The eye gaze direction is an important part in the process of performing
these functional movement patterns. Looking up has detrimental effects on
proper technique, interfering with (i) the correct bottom position, (ii) the hip
drive out of the bottom position, and (iii) the back angle. In addition to that, it
places the cervical spine in extreme overextension and can lead to severe RSI.
Similar to the depth of movement and the back positioning, this aspect of the
movement pattern execution is easily observed by a trained coach, regardless
of class size. Based on the testimony of the certified health professionals that
helped in planning of the experiment, eye gaze direction is the hardest aspect
to amend in a beginner.

The correct knee positioning is directly in line with the feet, slightly
out in front of the toes, so that the femurs and the feet are parallel. The exact
distance and positioning is determined by the anthropometry of the individual,

thus this aspect of execution is inherently difficult to observe and requires great
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Figure 4.8: Angles of hip drive movement patterns [78].

attention to even monitor a single individual - unfeasible in larger classes. The
correct foot positioning is based on three aspects: (i) the mid-foot balance
point, (ii) the distance between heels and the angle of the feet, and (iii) the
plantar pressure distribution. Mid-foot balance point is shown in Figure 4.10
- the musculoskeletal system maintains the tibial angle and transfers force to
the sole of the foot. Extreme execution mistakes of mid-foot positioning can
be noticed as the individual looses balance when performing the exercises, as
shown in Figure 4.11. However, subtle errors pose a threat to the individual’s
health and are not observable without the aid of instruments. The correct
distance between the heels and the angle of the feet, shown in Figure 4.12, can
be easily observed by a trained coach, regardless of class size. The last aspect
of foot positioning is the plantar pressure distribution. The musculoskeletal
system is in balance when ground pressure is evenly distributed directly over
the middle of the foot: the mid-foot segment - right under the arch of the
foot - is the point of interaction with the ground that is farthest away from
both the forward and the rearward edges of contact [78]. This aspect is not
observable without the aid of instruments, and any mistake, when performed
repeatedly, can lead to (i) shear on the knees, (ii) patellar RSI, and (iii) lower
back injuries.

Based on this understanding of the musculoskeletal aspects responsible
for the most prevalent injuries, we decided to update the platform developed
in [73], [73] and [76] to collect data from (i) knee positioning, (ii) mid-
foot balance, and (iii) plantar pressure distribution during functional exercise

training. The aim was to build the HAR classifier for the second experiment
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Figure 4.9: Difference between the correct back positioning, on the left, and
lumbar overextension, on the right [78].

and the validation of the assessment model proposed by this work in chapter 5.

One prevailing limitation of the surveyed the works, discussed in chap-
ter 2, is the employment of homogeneous participants in the experiments. This
study tries to circumvent this problem with volunteers carefully selected for
their diverse characteristics - age, gender, height and weight - and the partic-
ipation of people with disabilities. Table 4.1 bellow summarizes participants
profile information. Since the insole and shoes are US men’s size 8.5, most of
the selected participants fell into the 7.5 to 10.5 shoe size range. Although one
female participant wore US men’s size 8, the overall accuracy of her activity

recognition results were similar to the other participant’s.

4.2
Conducting the Experiment

In this section we describe in detail how the experiment was conducted.
The activity model we developed for the experiment comprises 13 activities:
walking straight (2km/h), slow jogging (6km/h), hopping, ascending stairs,
descending stairs, standing, basic squat, sumo squat, squat hold, basic step
up, front lunge, side lunge, and sitting. The experiment was conducted in 3
distinct 30-minute sessions, where participants performed a set of the planned
activities monitored by one certified physical education professional. Following
the advice of the physical educator, no participant performed more than 1
session per day and sessions were spaced by at least 48h. All sessions were
performed in a personal training studio.

At each session, participants performed 6 cycles of 5-minute routines.
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Figure 4.10: Mid-foot balance point [78].

In the first session, participants were required to interweave walking, jogging,
hopping, ascending stairs, descending stairs, standing, and the execution of
the Basic Step Up functional exercise. In the second session, participants were
required to interweave walking, standing, sitting and the execution of the Basic
Squat, Sumo Squat and Squat Hold functional exercises. In the third session,
participants were required to interweave walking, standing, sitting and the
execution of the Front Lunge and Side Lunge functional exercises. Subjects
were free to perform the activities - the wearable prototype did not restrict in
any sense their movement. All routines were developed jointly with the certified
physical education professional, who provided clear instructions of how the
activities were to be performed during the experiment. We focused on the
time that each participant should spend performing the proposed activities,
rather than the number of repetitions, as the physical conditioning of each
participant varied significantly. No training weights were used, to mitigate the
probability of injuries during the experiment. Table 4.2 details the physical
activities performed during the data collection experiment.

We accompanied all participants during the sessions to monitor the
wearable IoT device data collection and for logging any unusual occurrence.

Hypoallergenic socks and foot deodorizer were used to avoid skin allergies and
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Experiment 1: Participant profile summary
Participant Age Gender Height Weight Observations

No.1

No.2
No.3
No.4
No.5

No.6
No.7
No.8
No.9
No.10
No.11
No.12

35  Male 1.85m 136Kg Class II Obesity &
Right Lateral Meniscus Tear

28  Male 1.74m T73Kg ADHD

29  Male 1.76m T72Kg -

32 Male 1.8lm 81Kg -

27 Female 1.7Tm 61Kg  Left Knee RSI &
Left Ankle Lesion

45  Female 1.64m 87Kg  Class II Obesity

62  Male 1.93m 110Kg Overweight

28  Male 1.74m T70Kg -

37  Female 1.67m 59Kg  Professional Runner

35  Male 1.54m 65Kg  Overweight

34 Male 1.89m 90Kg  Professional Skater

33 Female 1.61lm 52Kg -

Table 4.1: Main physical characteristics of each participant

Experiment 1: Exercise routines

Session 1

Cycle Routine

1 1 min walk, 2 min ascending stairs, 1 min walk, 1 min standing
2 1 min walk, 2 min descending stairs, 1 min walk, 1 min standing
3 1 min walk, 2 min Basic Step Up, 1 min walk, 1 min standing
4 1 min walk, 2 min Jogging, 1 min walk, 1 min standing

5 1 min walk, 2 min Hopping, 1 min walk, 1 min standing

6 1 min walk, 2 min Basic Step Up, 1 min walk, 1 min standing
Session 2

Cycle Routine

1 1 min walk, 2 min Basic Squat, 1 min standing, 1 min sitting
2 1 min walk, 2 min Sumo Squat, 1 min standing, 1 min sitting
3 1 min walk, 2 min Squat Hold, 1 min standing, 1 min sitting
4 1 min walk, 2 min Basic Squat, 1 min standing, 1 min sitting
5 1 min walk, 2 min Sumo Squat, 1 min standing, 1 min sitting
6 1 min walk, 2 min Squat Hold, 1 min standing, 1 min sitting
Session 3

Cycle Routine

1 1 min walk, 2 min Front Lunge, 1 min standing, 1 min sitting
2 1 min walk, 2 min Side Lunge, 1 min standing, 1 min sitting
3 1 min walk, 2 min Front Lunge, 1 min standing, 1 min sitting
4 1 min walk, 2 min Side Lunge, 1 min standing, 1 min sitting
5 1 min walk, 2 min Front Lunge, 1 min standing, 1 min sitting
6 1 min walk, 2 min Side Lunge, 1 min standing, 1 min sitting

Table 4.2: Data collection experiment exercise routines.
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Shoulder Lldth

Figure 4.12: Correct heel positioning and feet angle [78].

prevent any discomfort. In total, 18 hours of activity data were collected -
90 minutes of feet and knee posture and movement data from each volunteer.
The number of subjects in our study is not that different from the surveyed
works others, considering the median of 6 found in the literature. However, the
number of samples in our study - over 1.2 million - is significantly higher than

the median number of samples - around 50,000 - found on the surveyed works.

4.3
Data Acquisition

During the experiment, a stream of unprocessed sensor signals - built
from the combination of the insole’s sensors and the knee’s sensors - is
stored in the microcontroller in JSON format. This raw data combines two
accelerometers, two gyroscopes, two magnetometers, six FSR sensors, altitude,

pressure, and two range finder sensor signals, resulting in 28-feature set entries
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to the dataset. Following the recommendations of [38], we used a 10 Hz
sampling rate to recognize between similar activities and subtle variations in
execution style. This study investigated the effects of sample size and time
window lengths in HAR, using an activity model with eight activities: standing,
walking, sitting, climbing stairs up, climbing stairs down, lying, turning and
running - an activity model similar to the one used by this work. Also similar
to this work, the study in [38] employs decision trees algorithms and ten-
fold cross-validation - the same methods used to build the HAR classifier
presented in this chapter. The JSON formatted data was periodically sent
to the application server in small packages of 200KB to reduce energy and

data usage.

4.4
Data Processing, Feature Extraction and Selection

A data processing pipeline of two steps, similar to the one proposed
in [73] and [76], was employed. No experiment data was discarded, given
that the prototype starts collecting feet movement and posture information
immediately after it is powered. First, the dataset was labelled for supervised
learning, and activity class information was appended to each entry according
to the activity performed in the experiment. All sensor data was normalized,
to make the scales between participants equivalent for the model building.

In the feature extraction stage, we used descriptive statistics - standard
deviation, variance, minimum, maximum and average values - to generate

derived features from each of the 28 original features:

— Six FSR sensor readings;

— Six gyroscope axis data;

— Six magnetometer axis data;
— Six accelerometer axis data;
— Altitude reading;

— Pressure reading; and,

— Two range finder sensors reading.

Moreover, as employed by some of the surveyed works and the research
previously conducted, (i) the cumulative difference between samples for each
feature and (ii) the Euler angles of pitch, roll and yaw were used to generate
additional derived features, for a total of over 200 features for selection.

Asin [73] and [74], we employed Hall’s algorithm [37] based on correlation

for feature selection, using its default "Best Fit" backtracking greedy strategy
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configuration. In total, 22 features were selected by this method. As in [46],
[75] and [74], the range finder sensors were successfully employed and improved
the average accuracy of our results. Unlike the classifier proposed in [73], the
altimeter was not employed by the classifier. Using the features selected by
Hall’s algorithm, our HAR classifier was built based on:

Four FSR sensor readings;

— Two axes of the foot gyroscope;

Three axes of the knee gyroscope;

Two axes of the foot magnetometer;

— Two axes of the knee magnetometer;

One axes of the foot accelerometer;

Two axes of the knee accelerometer;

— Two Euler angles of the foot; and,

Maximum and minimum of the range finder sensors.

4.5
Classification and Validation

We experimented different strategies to build the HAR classifier model,
such as Bagged Decision Trees, Classification and Regression Trees, k-Nearest
Neighbors, Naive Bayes, and Support Vector Machines. Following the results
found in the research conducted previously in [73, 75, 76], the Random Forest
Algorithm achieved better results - with an overall classification accuracy of
about 87% for activity recognition - a drop of 6.26% in the overall accuracy
when compared to the first activity model proposed in [73]. Random Forests, as
ensemble methods, tend to decrease variance and bias and improve predictions.
We set the hyper parameter of the Number of Trees to 128, restricted the
hyper parameter Depth to 15 to avoid overfitting and employed all selected
features. This configuration is expected to efficiently produce a highly accurate
classifier, even on large databases with hundreds of features.To validate the
model, we applied the Leave-one-out Cross Validation in attempt to increase
the robustness of the model - since this method guarantees that both training
and test splits does not share any example data. For full disclosure, the
individual validation results for each of the 12 participants are shown on Table
4.3. Although the achieved results are similar to the top results found in the
literature for complex activity models, as discussed in chapter 2, since each
research employed a different dataset, activity model, algorithm customization

and validation methods, it is not possible to compare the results.
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Classification and validation results
Participant  Precision  Recall

No.1 81.1 59.9
No.2 79.3 54.2
No.3 94.3 72.2
No.4 92.2 74.6
No.5 84.2 68.1
No.6 82.7 59.4
No.7 87.5 68.8
No.8 90.1 79.0
No.9 96.4 80.4
No.10 4.7 ol.4
No.11 89.5 64.3
No.12 92.5 70.5

Table 4.3: Results per participant

For the time window sizes to build the classifier, we evaluated different
alternatives and decided to use a 3-seconds window based on our model
validation results. Although [8] recommends window sizes within the 0.25s
- 0.50s range for single activity recognition, our activity model consists of
complex, compound multi-jointed exercises, and smaller window sizes did not

achieve good overall classification accuracy.
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5
Second Experiment and Methodology Evaluation

In this chapter, we describe the stages followed to validate the proposed
pattern recognition assessment model: performing a second experiment and
conducting a semi-structured interview to evaluate usability and user experi-

ence.

5.1
The Second Experiment

During the second experiment we employed 9 of the 12 original first
experiment volunteers - three of them were not available at the time it was
conducted. Table 5.1 summarizes Experiment 2 participants information.

The goal of the second experiment was to validate the feasibility of the
HAR classifier for and its capability to assess if the movement pattern of a
particular functional training exercise was performed correctly by the user. To
achieve that goal, we used the same wearable IoT device employed to build the
model with two modifications: (i) we added a SparkFun Haptic Motor Driver
with the DRV2605L by Texas Instruments, together with a vibration motor,
and (ii) we altered the server code to send a return code that indicated if the
activity was performed correctly. As discussed in chapter 2, audible feedback
is inadequate for CrossFit™ classes based on the typical high sound employed

by coaches during classes. After the conclusion of the second experiment, we

Experiment 2: participant profile summary
Participant Age Gender Height Weight Observations

No.1 35  Male 1.85m 136Kg Class II Obesity &
Right Lateral Meniscus Tear
No.2 28  Male 1.74m T73Kg ADHD
No.3 29  Male 1.76m T72Kg -
No.6 45  Female 1.64m 87Kg  Class II Obesity
No.7 62  Male 1.93m  110Kg Overweight
No.8 28  Male 1.74m T70Kg -
No.9 37  Female 1.67Tm 59Kg  Professional Runner
No.10 35  Male 1.54m 65Kg  Overweight
No.12 33 Female 1.61lm 52Kg -

Table 5.1: Main physical characteristics of each participant
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Experiment 2: Exercise routines

Session 1

Cycle Routine

1 min walking, 2 min Basic Step Up, 1 min standing, 1 min sitting
1 min walking, 2 min Front Lunge, 1 min standing, 1 min sitting

1 min walking, 2 min Side Lunge, 1 min standing, 1 min sitting

1 min walking, 2 min Basic Squat, 1 min standing, 1 min sitting

1 min walking, 2 min Sumo Squat, 1 min standing, 1 min sitting

1 min walking, 2 min Squat Hold, 1 min standing, 1 min sitting

O UL W N —

Table 5.2: Model validation experiment exercise routines.

replaced the Haptic Motor Driver and the vibration motor for a light-emitting
diode (LED) for demonstration purposes.

The second experiment was conducted in a 30-minute session, where
participants performed a set of the planned activities monitored by the
same certified health professionals of the first experiment. This session was
performed at the same personal training studio used for the first experiment.
No data was collected during the second experiment. At the session, the
participants performed 6 cycles of 5-minute routines. The routines consisted of
all 13 activities of our activity model, and were also developed jointly with the
certified physical education professionals. No instructions of how the activities
were to be performed were provided during the experiment, although every
question posed by the participants was answered. A few participants that were
performing correctly every activity of the proposed routines were asked to
alter the movement pattern to replicate the most common execution errors
found during a functional exercise practice. This was done for no more than
3 repetitions for each activity - since the repetitions were performed without
extra weights and on foam mat floor tiles, the physical educator ensured that
no harm would befall those participants. Once more, we focused on the time
that each participant should spend performing the proposed activities, rather
than the number of repetitions, as the physical conditioning of each participant
varied significantly. Table 5.2 details the performed activities:

During each cycle, participants performed only one of the 6 specific
functional exercises of our activity model. We configured the server application
to assess only the matching functional exercise each cycle, sending a return
code of 0 if the functional exercise - basic step up, basic squat, sumo squat,
squat hold, front lunge, and side lunge - movement pattern was performed
correctly and 1 otherwise. A return code of 1 activated the vibration motor,
warning the user of the movement pattern performed. We asked one health

professional to take notes during the sessions, registering each time a functional
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Assessment model results: Step up and lunges
Participant  Basic step up  Front lunge Side lunge

No.1 28/2 6,/4 5/5
No.2 24/6 6/6 4/8
No.3 28/2 4/4 3/5
No.6 22/3 6/2 6/2
No.7 12/3 4/2 4/2
No.8 18/2 4/2 3/3
No.9 24/1 8/0 7/1
No.10 10/2 5/1 1/3
No.12 19/1 10/2 10/2
Total: 185/22 53/23 43/31

Table 5.3: Assessment model evaluation 1

Assessment model results: Squats
Participant  Basic squat  Sumo squat Squat hold

No.1 9/1 5/1 3/1
No.2 6/4 3/2 4/1
No.3 4/2 4/1 3/2
No.6 6/2 5/1 3/1
No.7 5/1 3/1 1/3
No.8 3/3 1/2 4/2
No.9 7/1 5/3 6,/2
No.10 4/2 5/1 2/2
No.12 9/1 9/1 9/1
Total: 53/17 43/13 35/15

Table 5.4: Assessment model evaluation 2

exercise movement was performed poorly. The other movements were not
analysed during the sessions, since (i) walking was added for warming-up and
(ii) standing and sitting were added for resting purposes. The definition of a
correctly performed movement, during the second experiment, was based on
the health professional’s observations log and post-session interview. Tables 5.3
and 5.4 details the performed activities. Each column represents a functional
exercise performed during the second experiment. The numbers on the left
indicate the number of correct executions and the numbers on the right indicate
the number of execution errors.

In total, participants executed 421 correct movement patterns and made
121 execution mistakes, as observed by the health professional. Of the 121
mistakes, 81 were recognized by the assessment model, accounting for a recall
of ~66.9%. In the opinion of the certified health professionals, this result is
adequate for deployment, since the goal is the prevention of repeated mistakes,

not the detection of single execution mistakes. Of the 421 correctly executed
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movement patterns, 12 were recognized by the assessment model as execution
mistakes. This high-enough precision, of ~87.1%, is a particularly important
result, since misplaced feedback is detrimental to the athlete’s understanding

of the movement pattern execution.

5.1.1
The Interview

After the second experiment, we performed a semi-structured interview
to evaluate usability and user experience. We interviewed all participants from
the second experiment after their sessions, and the certified health professionals
after the study was concluded. We documented all the information provided
by the participants and certified health professionals. In addition to that, we
interviewed one participant of the first experiment that did not participate in

the second experiment. The following questions were asked to the participants:

— Did the device or the haptic feedback hinder in any way the execution

of the activities?

— Do you perceive the haptic feedback as a help to perform the proposed

activities?

— Do you think that the exercise execution assessment platform proposed

is necessary or adequate for your regular physical training program?

Overall, the participants did not consider that the device hindered
the execution of the activities, since it is lightweight and the flexible cable
connecting the knee band and the foot external protective case was well
positioned and of adequate length. Only one participant, below the average
height of the participants, reported the cable as a minor nuisance during
the sessions. However, 3 of the 10 respondents reported that they were over
overzealous with their movements to prevent any damage to the wearable
IoT device, so in their perception the device hindered their focus during the
exercises execution. Of those 3 respondents, 2 reported that the impaired focus
was the probable cause of some execution mistakes. The participants knew that
there was only one prototype available and that the research group did not
receive any grant to fund the research. Considering that the IoT wearable
device used in the experiment is a prototype that could be improved, with
more resources, with the removal of the cable and the development of a more
robust circuitry and casing, and the feedback provided, we may assume that the
proposed platform does not hinder the execution of the activities that comprise
the activity model investigated in this work. The haptic feedback was perceived

as a help factor to perform exercises more correctly by 8 of the 9 respondents,
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although 6 of those respondents pointed out that a human feedback is more
helpful since it enables them to understand the reason why an execution was
performed incorrectly. It is important to observe that the only respondent
who did not think the haptic feedback is a help factor to perform exercises
more correctly is a professional half marathon and 5K runner, with extensive
physical education experience. Although only a single answer, it suggests
that the feedback is more useful for beginner and intermediate athletes. All
seven physically active participants train without the individual guidance of a
physical educator by cause of monetary costs or complex schedule. They and
agreed that (i) an exercise execution assessment platform is necessary in the
absence of a coach or spotter and that (ii) the proposed model and the type
of device employed - after adjustments necessary for production, as discussed
above - are adequate for their training regimen. Some respondents reported
that the study helped them realize the importance of coaching during training
for their long-term safety, and that they would consider buying products or
subscribing to services that provide exercise execution feedback.

To the certified health professionals, we asked the following questions:

— Do you perceive the loT wearable device as an impediment to the

execution of the activities of the experiment?

— Do you perceive the haptic feedback as a help to perform the proposed
activities?

— Do you think that the exercise execution assessment platform proposed

is necessary or adequate for your regular practice as a physical educator?

Both respondents did not consider that the device an impediment to the
execution of the activities, however, they agree that the cable is not adequate
to most of the physical practice environments, especially the gymnasium. Re-
garding the haptic feedback both reported that personalized real-time feedback
is key to the safe practice of physical activities. One of the professionals stated
that they were amazed by the use of such technology in their field, and did not
provide any further information. The other professional believes that haptic
feedback on the feet is not suitable for (i) most of the physical activities, such
as running, jumping or climbing, where there is already a sensory overload on
the body part or where the athlete is barefooted and (ii) that haptic feedback
on any part of the body is not suitable for some physical activities, such as
swimming or grappling martial arts, where the athlete will not be able to focus
his tactile perception on the device. However, he considers the haptic feedback
extremely helpful for a niche of complex exercises, such as functional training

and weightlifting. In addition to that, he suggested to conduct a similar study
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to investigate precision-based Olympic Sports, such as archery and shooting.
Both professionals agreed that (i) a typical functional exercise class equipped
with a physical assessment platform could be monitored by only one coach,
able to make better use of his time instead of monitoring every aspect of the
execution, (ii) that a physical assessment platform capable of monitoring as-
pects of the execution not easily assessed by an observational approach, such as
plantar pressure distribution, greatly enhances their performance as coaches,
and (iii) despite the real-life accuracy below 70% the model is adequate for
deployment, since the key factor regarding RSI prevention is the detection of
repeated mistakes, not the detection of a single poor execution. One profes-
sional also stated that, although non-ideal, the proposed platform could enable
them to coach a geographically distributed class - with the aid of cameras and
monitors - or a private client on a trip.

Finally, the respondents stated that constant feedback is not the best
strategy to amend a flawed execution, and any feedback provided should
respect the individual’s (i) tolerance for criticism and (ii) capacity to progress
in a single session. Their belief is that a post-execution or real-time private
report, to the coaches, could allow for a more effective approach than one of

real-time feedback.
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Conclusion

This work proposes a platform for physical evaluation of functional
exercise activities with real-time feedback to help reduce injury risk. We
conducted two experiments: (i) the first with 12 volunteers, to build a HAR
classifier of a 13-classes activity model based on foot and knee movement
and posture information and (ii) the second with 9 volunteers, to validate
the physical evaluation model and investigate usability issues of the proposed
wearable IoT device. The platform was considered helpful by the experiment
participants and the supervising physical educators.

The main contributions are:

— A public domain dataset with about 1 million samples and 12 activity

classes, available in [73];

— A platform and a HAR model that can be used to assess the quality of

execution of different lower limb functional exercises; and,

— A wearable IoT device blueprint with a comprehensive and novel sensor

fusion selection that can be used for lower limb HAR.

The platform and HAR model proposed in this work were first developed
for the recognition of simple activities, based on an activity model with 6
activities - walking straight, walking slope up, walking slope down, ascending
stairs, descending stairs and sitting -, and published in [73]. An investigation
of the sensor type relevance for HAR followed the initial research, employing
the same platform and HAR model, and published in [74]. The sensor mix
and wearable IoT device were updated to assess physical activity engagement,
with an activity model comprising 10 activities - walking straight (2km/h),
walking slope up (2km/h), walking slope down (2km/h), slow jogging (6km/h),
slow jogging slope up (6km/h), slow jogging slope down (6km/h), hopping,
ascending stairs, descending stairs, and sitting. Finally, with the addition of
the knee sensors, the wearable loT device and HAR model were employed for
the assessment of quality of functional exercises to mitigate the probabilities
of injuries. The conducted research is published in [76] and is the foundation

this work.
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Our assessment model achieved a precision of ~87.1%, and recall of
~66.9%, when determining if a functional exercise was performed correctly.
This result, as discussed in chapter 5, was adequate for the proposed goal.
However, if necessary, it is possible to improve the HAR Classifier for the
activity model used in this work by (i) deploying sensors on the lower back,
(ii) deploying different sensor types on the knees, and (iii) conducting another
experiment with a greater number of diverse participants. In addition to that,
a new model employing participant’s features, such as age, height and weight,
could be devised to attempt to improve overall accuracy. However, based on
the number of participants, measures to avoid overfitting should be thoroughly
considered.

Although many studies focus on the recognition of activities, the assess-
ment of quality of execution is still a challenge of the HAR research field.
Quality is a subjective characteristic, and some of its agreed aspects may not
be easily observed - even by sensors and video recording devices. In this study,
the definition of exercise execution quality was derived from an agreement
between the two certified health professionals that participated in the plan-
ning and conduction of the experiments - the developed HAR classifier is their
opinion embedded in a statistical model. Although this work was structured to
facilitate replication by other researchers, the achieved classification and val-
idation results of this model will always be dependent upon the observations
of the selected certified health professionals. Concerning the proposed model,
one limitation of this work is the binary approach to the assessment of an in-
dividual’s movement pattern, where a movement patterns is defined as either
correct or incorrect, as apposed to an approach where an incorrect movement
pattern is graded according to the severity of the mistake.

It is possible that, in the context of exercise execution quality assessment,
a more effective approach could be developed based on recommender systems.
Similar to the cold start problem [52], an initial HAR classifier, based on
the characteristics of the user, could be offered for a first time user. Then,
after each use, the collected data could be employed to continuously tailor the
HAR classifier to the specific needs of its user. Considering that approach,
a scenario worth investigating is (i) the long-term monitoring of a health
professional, (ii) supported by the platform proposed in this work, with (iii) a
periodic revision of the custom-made HAR classifier with newly-collected data
and the individual’s health condition. Another challenge worth investigating
is the deployment of sensors and their impact on the accuracy of HAR
classifiers for specific activity models. The optimal quantity of sensors and

their positioning, particularly the FSRs, remain unanswered in the surveyed
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literature. Finally, a bigger challenge lies in the use of electromyography to
enhance the assessment of execution mistakes and enable the monitoring of
complex movement patterns.

We hypothesize that, although not reported by the participants, the
performed physical exercise routines in the second experiment were excessively
demanding. The small volume of repetitions of the basic squat, sumo squat
and squat hold exercises, performed last, suggest that the participants could
have been fatigued during their execution. In addition to that, the exhaustion
level of the participants during the execution of the last exercises could have
an influence on the execution mistakes. Since the basic squat, sumo squat
and squat hold exercises are considered, by the health professionals, to be
more complex than the basic step up, front lunge and side lunge exercises, the
achieved results are not conclusive regarding this observation.

Currently, we plan to evolve the proposed wearable IoT device prototype
aiming at the capability to build HAR classifiers for a broader activity model,
comprising full-body movement patterns. One alternative is the use of a BSN
and the deployment of sensors on the lower back, shoulders and head, to collect
data from those body parts. Our goal is to use the evolved wearable IoT
prototype to assess the quality of execution of movement patterns in collective
sports, such as basketball or soccer, or martial arts based on hand and foot

strikes, such as boxing and kickboxing.
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